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Abstract

The lateral vibration of an axially loaded elastic rod positioned on a fractional derivative type of
foundation is studied. It is shown that the dynamics of the problem is governed by a system of two coupled
linear differential equations with fractional derivatives. For this system of equations the questions of
existence, regularity and the stability of solution are analysed. The results are compared with the stability
bound for an elastic rod on Winkler (elastic) type of foundation.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The study of stability of elastic and visco-elastic rods is important for both theoretical and
pragmatic reasons. While the theory of stability of elastic rods, as well as visco-elastic rods
described by integer time derivatives of the deformation is well developed, there are few studies of
the stability of visco-elastic rod described by fractional (or better to say real), derivatives of the
deformation (see for example Refs. [1–4]).

Many important structures may be modelled as an elastic axially loaded rod positioned on
visco-elastic foundation. A railway track being the primary example [5]. Here the stability of an
elastic rod, of finite length, positioned on a visco-elastic foundation of fractional derivative type
will be analysed. Thus, the results presented here represent a generalization of the classical
problem of determining stability boundary of an elastic rod on elastic foundation (for example
Winkler type foundation). It will be shown that the use of visco-elastic foundation for a axially
loaded rod produces two effects. Firstly, the foundation has a stabilizing effect, and secondly, it
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leads to dissipation of energy in the lateral motion, thus causing quick disappearance of
vibrations. Stability bounds obtained here will be compared with the stability bounds that follow
from the classical Euler (static) theory.

Consider a simply supported elastic rod, the equations of transversal vibrations for the case
when the influence of axis compressibility is taken into account, are (see Ref. [6] pp. 338, 392)

@H

@S
¼ r0

@2x

@t2
� qx;

@V

@S
¼ r0

@2y

@t2
� qy;

@M

@S
¼ �V ð1 þ eÞ cos Wþ Hð1 þ eÞ sin W� m;

@x

@S
¼ ð1 þ eÞ cos W;

@y

@S
¼ ð1 þ eÞ sin W;

e ¼
H cos Wþ Vsin W

EA
;

@W
@S

¼
M

EI
; ð1Þ

where x and y are coordinates of an arbitrary point on the rod axis, S is the arc length of the rod
axis in the undeformed state so that SAð0;LÞ where L is the length of the rod in the undeformed
state, t is the time, H and V are components of the force in an arbitrary cross-section of the rod
along the %x and %y axes of a rectangular Cartesian coordinate system %x � B � %y; respectively, M is
the bending moment, e is the axial strain of the rod axis, i.e., e ¼ ðds � dSÞ=dS; where ds is the
length in the deformed state of an element of the rod axis whose length in the undeformed state is
dS; and qx; qy and m are the intensities of the distributed forces and couples per unit length of the
rod axis in the undeformed state, W is the angle between the tangent to the rod axis and %x axis, r0 is
the line density of the rod, EI is the bending rigidity of the rod and EA is the extensional rigidity of
the rod. For the rod shown in Fig. 1 the boundary conditions are

yð0; tÞ ¼ 0; xð0; tÞ ¼ 0; yðL; tÞ ¼ 0;

Mð0; tÞ ¼ 0; MðL; tÞ ¼ 0; HðL; tÞ ¼ �F : ð2Þ

Suppose that the rod is positioned on a visco-elastic foundation. It is assumed that the foundation
is of fractional derivative type. Such foundation has importance as railpad in the railway track
model (see Ref. [5]). If the foundation is made of fractional type visco-elastic material then the
force in the foundation Q and deformation D of the foundation (in the present case D ¼ y) for a
generalized Zener model are connected as (also see Ref. [7])

Q þ tQQðaÞ ¼ Epðy þ tyyðaÞÞ; ð3Þ
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T.M. Atanackovic, B. Stankovic / Journal of Sound and Vibration 277 (2004) 149–161150



with 0oao1: In Eq. (3) ð�ÞðaÞ is used to denote the ath derivative of a function ð�Þ taken in
Riemann–Liouville form as (see Refs. [8,9])

da

dta
gðtÞ ¼ gðaÞ �

d

dt

1

Gð1 � aÞ

Z t

0

gðxÞ dx
ðt � xÞa

¼
d

dt

1

Gð1 � aÞ

Z t

0

gðt � xÞ dx
xa

: ð4Þ

The dimension of the constants ty and tQ is ½time	a: The constants Ep; tQ and ty in Eq. (3) are
called instantaneous modulus of the pad and the relaxation time of strain and stress, respectively.
If one uses a rheological model shown under the rod in Fig. 1 (standard linear solid in which
dashpot is replaced by an element called ‘‘springpot’’ characterized by two constants p; and a)
then the constants in Eq. (5) are given as (see Ref. [10]): Ep ¼ E1E2=ðE1 þ E2Þ; ty ¼ ðp=E2Þ; tQ ¼
p=ðE1 þ E2Þ: Here E1 and E2 are the moduli of elasticity of the springs in both parallel and series
connection. It is assumed that the following inequality, as a consequence of the second law of
thermodynamics, is satisfied (see Refs. [11,12])

E > 0; tQ > 0; ty > tQ: ð5Þ

Suppose that the pads are positioned under the rod continuously so that

qx ¼ 0; qy ¼ �bQ; ð6Þ

where b is a constant depending on the part of the rod’s width that is supported by pads. Note
that in the case a ¼ 1 the foundation becomes a standard visco-elastic solid.

The trivial solution to the system (1), (2), (3) and (5) in which the rod axis is straight reads

H0ðS; tÞ ¼ �F ; V0ðS; tÞ ¼ 0; M0ðS; tÞ ¼ 0;

x0ðS; tÞ ¼ 1 �
F

EA

� �
S;

y0ðS; tÞ ¼ 0; e0ðS; tÞ ¼ �
F

EA
;

W0ðS; tÞ ¼ 0; Q0ðS; tÞ ¼ 0: ð7Þ

Let the solution to Eqs. (1), (2), (3) and (5) be written in the form H ¼ H0 þ DH;y; f ¼ f 0 þ Df ;
where DH;y;DW are perturbations, assumed to be small. By substituting this in Eq. (8) and
neglecting the higher order terms in perturbations DH;y;Df

@DH

@S
¼ r0

@2Dx

@t2
;

@DV

@S
¼ r0

@2Dy

@t2
þ bDQ;

@DM

@S
¼ �DV 1 �

F

EA

� �
� F 1 �

F

EA

� �
DW;

@Dx

@S
¼ 0;

@Dy

@S
¼ 1 �

F

EA

� �
DW;

De ¼
DH

EA
;

@DW
@S

¼
DM

EI
;

DQ þ tQDQðaÞ ¼ EpðDy þ tyDyðaÞÞ; ð8Þ
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is obtained, subject to

DHðl; tÞ ¼ 0; DMð0; tÞ ¼ 0; DMðl; tÞ ¼ 0;

Dxð0; tÞ ¼ 0; Dyð0; tÞ ¼ 0; Dyðl; tÞ ¼ 0: ð9Þ

Introducing the dimensionless quantities

l ¼
Fl2

EI
; t ¼

tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0l4=EI

p ; m ¼

ffiffiffiffiffiffiffiffiffiffiffi
EAl2

EI

s
; u ¼

Dy

l
;

x ¼
Dx

l
; b ¼ b

Epl4

EI
; q ¼

DQ

lEp

;

tq ¼ tQ

EI

r0l4

� �a=2

; tu ¼ ty

EI

r0l4

� �a=2

: ð10Þ

from Eqs. (8), (9) it follows that

@4u

@x4
þ l 1 �

l
m2

� �
@2u

@x2
þ 1 �

l
m2

� �2@2u

@t2
þ b 1 �

l
m2

� �2

q ¼ 0;

q þ tqqðaÞ ¼ ðu þ tuuðaÞÞ; ð11Þ

and

uð0; tÞ ¼ 0;
@2u

@x2
ð0; tÞ ¼ 0; uð1; tÞ ¼ 0;

@2u

@x2
ð1; tÞ ¼ 0: ð12Þ

Note that Eq. ð5Þ2;3 imply

tu > tF > 0: ð13Þ

Suppose that the solution to Eqs. (11), (12) is assumed in the form

uðx; tÞ ¼ TðtÞ sin npx; F ðx; tÞ ¼ V ðtÞ sin npx; nAN: ð14Þ

Then by substituting Eq. (14) into Eq. (11) and setting n ¼ 1 (the most interesting is the first
mode), it follows:

T ð2ÞðtÞ þ pTðtÞ þ bV ðtÞ ¼ 0;

V ðtÞ þ tF V ðaÞðtÞ ¼ TðtÞ þ tuT ðaÞðtÞ; ð15Þ

where

p ¼
p2 p2 � lð1 � l=m2Þ
� �

ð1 � l=m2Þ2
: ð16Þ

Let the initial conditions for TðtÞ be given as Tð0Þ ¼ T0;T ð1Þð0Þ ¼ T1: Then from Eq. ð15Þ2 it
follows V ð0Þ ¼ T0: Thus in what follows system (15) will be analysed with restriction (13) and the
initial conditions Tð0Þ ¼ T0;T ð1Þð0Þ ¼ T1;Vð0Þ ¼ T0: In the special case when the slenderness
ratio of the rod tends to infinity, i.e., m-N Eq. (15) corresponds to the case of an inextensible rod
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(i.e., EA-NÞ: In this case

p ¼ p2ðp2 � lÞ: ð17Þ

In what follows either of the values of p given by Eqs. (16) or (17) may be used.

2. Solution to the system (15)

2.1. Laplace transformation of solutions and their properties

To solve Eq. (15) the Laplace transformation technique will be used. Let #TðzÞ denote the
Laplace transformation of TðtÞ; i.e., #TðzÞ ¼ LðTÞðzÞ ¼

R
N

0 e�ztTðtÞ dt: Then from Eq. (15) it
follows that

z2 #TðzÞ þ p #TðzÞ þ b #VðzÞ ¼ T1 þ zT0;

tqza #VðzÞ þ #VðzÞ ¼ tuza #TðzÞ þ #TðzÞ: ð18Þ

In Eq. (18) za is the principal branch of this multiform function. In writing Eq. ð18Þ2 the fact that
LðT ðaÞÞðzÞ ¼ zaLðTÞðzÞ � 1=Gð1 � aÞ

R t

0 TðtÞdt=ðt � tÞa

 �

t¼0
is used. The term in parentheses

vanish if TðtÞ is bounded when t-0 [9]. By solving Eq. (18)

#TðzÞ ¼
ðtqza þ 1ÞðT1 þ T0zÞ

D
;

#VðzÞ ¼
ðtuza þ 1ÞðT1 þ zT0Þ

D
; ð19Þ

is obtained, where

D ¼ ðz2 þ pÞðtqza þ 1Þ þ bðtuza þ 1Þ:

Next the zeros of D in the complex plane are estimated. First D is written as

D ¼ ðz2 þ AÞðtqza þ 1Þ � B; ð20Þ

where

A ¼ p þ b
tu

tq

; B ¼ b
tu

tq

� 1

� �
> 0; ð21Þ

and B > 0 because of Eq. (13), Aa0 and b > 0: Then D ¼ 0 if and only if

ðz2 þ AÞðtqza þ 1Þ ¼ B > 0: ð22Þ

Let z ¼ r expðigÞ with i ¼
ffiffiffiffiffiffiffi
�1

p
; ga0: Then

ðz2 þ AÞ ¼ r expðiyÞ; ð23Þ

where ra0 (because of Eq. (22)) with y arbitrary. From Eq. (22) one obtains

ðtqza þ 1Þ ¼
B

r
expð�iyþ i2kpÞ; kAN: ð24Þ
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Therefore,

Imðz2 þ AÞ ¼ Imðz2Þ ¼ r2 sinð2gÞ ¼ r sin y;

Imðtqza þ 1Þ ¼ ImðtqzaÞ ¼ tqra sinðagÞ ¼ �
B

r
sin y: ð25Þ

If ga0 from Eq. (25) it follows that

r2�a

tq

sinð2gÞ
sinðagÞ

¼ �
r2

B
o0: ð26Þ

Eq. (26) implies

jgj >
p
2
: ð27Þ

If g ¼ 0; then from Eq. (25) one has y ¼ 0: Suppose that there exists z ¼ r > 0 such that DðrÞ ¼ 0:
Then, from Eqs. (23), (24) we obtain r2 þ A ¼ r and tqra þ 1 ¼ B=r: Thus, r2 ¼ r� A > 0 so that

r > A: ð28Þ

Also, tqra ¼ B=r� 1 > 0 so that

roB: ð29Þ

Consequently, if there exists r > 0 such that DðrÞ ¼ 0; then AoroB; or B � A > 0: By using
Eq. (21) B � A > 0 gives bðtu=tq � 1Þ � p � bðtu=tqÞ > 0 or

bþ po0: ð30Þ

Now it is shown that the condition B � A > 0 i.e., condition (30) is not only necessary but
also sufficient for the existence of r > 0 such that DðrÞ ¼ 0: Thus the condition DðrÞ ¼ 0 is
written as

DðrÞ ¼ ðr2 þ AÞðtqra þ 1Þ � B

¼ tqr2þa þ r2 þ Atqra þ A � B ¼ 0: ð31Þ

Let y1 ¼ r2ðtqra þ 1Þ; y2 ¼ B � A � tqAra: Then DðrÞ ¼ 0 if y1 ¼ y2: From Fig. 2 it follows
that, independently of the sign of A; the curves y1ðrÞ and y2ðrÞ intersect at a point r ¼ r� > 0
if B � A > 0:

It is easily seen that B � A ¼ 0 is necessary and sufficient condition that r ¼ 0 is a solution to
DðrÞ ¼ 0: Next, this case is analyzed more closely. Suppose that B � A ¼ 0: Then by Eq. (31)

DðrÞ ¼ tqr2þa þ r2 þ Atqra ¼ 0; ð32Þ

hence

ra ¼ ðtqr2 þ r2�a þ AtqÞ ¼ 0: ð33Þ

If A > 0; then r ¼ 0 is the unique solution to DðrÞ ¼ 0 with B � A ¼ 0:
If Ao0 suppose that r > 0 exists such that tqr2 ¼ ð�AÞtq � r2�a: By Fig. 3 such r exists. It is

denoted by r�:
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From the analysis presented above it follows:

Proposition 2.1. (a) Let z ¼ r expðigÞ; r > 0; gAð�p; p	; ga0; be a zero of DðzÞ: Then jgj > p=2:
(b) B � A > 0 ðbþ po0Þ is a necessary and sufficient condition for the existence of r� > 0 such

that Dðr�Þ ¼ 0:
(c) B � A ¼ 0 ðbþ p ¼ 0Þ is the necessary and sufficient condition that r ¼ 0 is a solution to

DðrÞ ¼ 0: If in addition A > 0 ðp þ bðtu=tqÞ > 0Þ; then r ¼ 0 is the unique solution to DðrÞ ¼ 0; but if
Ao0 ðp þ bðtu=tqÞo0Þ; then there exists additionally r� > 0 such that Dðr�Þ ¼ 0:

2.2. The existence of solutions and the procedure to find them

It will be shown now that there exist functions TðtÞ and V ðtÞ such that their Laplace transforms
#TðzÞ and #VðzÞ satisfy Eq. (19). The analysis is present for TðtÞ only because the method for finding

V ðtÞ is just the same.
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Fig. 2. Solution of Eq. (31).
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First #TðzÞ given by Eq. ð19Þ1 is written in another form which will allow use of a theorem for the
existence of TðtÞ and which will be more useful in the sequel. Thus, #TðzÞ is transformed as follows:

#TðzÞ ¼
T0zðtqza þ 1Þ þ T1ðtqza þ 1Þ

D

¼
T0

z

z2ðtqza þ 1Þ
D

þ T1
ðtqza þ 1Þ

D

¼
T0

z
1 �

bðtuza þ 1Þ þ pðtqza þ 1Þ
D

� �
þ T1

ðtqza þ 1Þ
D

¼
T0

z
�

T0

z

bðtuza þ 1Þ þ pðtqza þ 1Þ
D

þ T1
zðtqza þ 1Þ

zD

¼
T0

z
�

ðT0p � T1zÞðtqza þ 1Þ
zD

�
T0bðtuza þ 1Þ

zD

¼
T0

z
� #T3ðzÞ; ð34Þ

where

#T3ðzÞ ¼
ðT0p � T1zÞðtqza þ 1Þ

zD
þ

T0bðtuza þ 1Þ
zD

: ð35Þ

It is proved now that every addend in Eq. (34) is the Laplace transform on Rþ of exponential
growth by using Ref. [13, I, Chapter 7, Theorem 3]. Consequently, #TðzÞ has the same property.

To find TðtÞ which corresponds to #TðzÞ the tables of Laplace transforms could be used, the
integral representation

TðtÞ ¼ lim
o-N

1

2pi

Z x0þio

x0�io
expðtzÞ #TðzÞ dz; ð36Þ

where x0 belongs to the half plane fz;Re z > ag in which #TðzÞ is analytic, the method of residue or
to give TðtÞ by a series. Next, the analytic expression for TðtÞ is given by a series.

Consider

1

D
¼

1

ðz2 þ AÞðtqza þ 1Þ � B

¼
1

ðz2 þ AÞðtqza þ 1Þ
1

1 � B
ðz2þAÞðtqzaþ1Þ

¼
1

z2 þ A

� �
1

tqza þ 1

� �



XN
k¼0

B

tq

� �k
1

z2 þ A

� �k
1

za þ 1=tq

� �k

: ð37Þ
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Since

L�1 1

z2 þ A

� �
�S1ðtÞ ¼

1ffiffiffiffi
A

p sin
ffiffiffiffi
A

p
t if A > 0;

1ffiffiffiffiffiffiffiffi
�A

p sinh
ffiffiffiffiffiffiffiffi
�A

p
t if Ao0;

8>>><
>>>:

L�1 1

za þ 1=tq

� �
�S2ðtÞ

¼ ata�1F ð1Þ
a ðzÞ; where z ¼ �

1

tq

ta
� �

; ð38Þ

FaðuÞ is Mittag–Leffler’s function (cf. Ref. [14]). By Eqs. (37), (38) it follows that

L�1 1

D

� �
¼S1ðtÞ � S2ðtÞ �

XN
k¼0

B

tq

� �k

S�k
1 ðtÞ � S�k

2 ðtÞ

¼S1ðtÞ � S2ðtÞ � S3ðtÞ; ð39Þ

where

S3ðtÞ ¼
XN
k¼0

B

tq

� �k

S�k
1 ðtÞ � S�k

2 ðtÞ; ð40Þ

and S�k is used to denote S�y�S|fflfflfflffl{zfflfflfflffl}ktimes
:

The proof that Eqs. (39), (40) holds can be found in Ref. [1]. Also with the results of this
reference the series S3ðtÞ can be approximated and the approximation’s error estimated.

2.3. Expression for the solution by the M transformation

The result present in this section can be used to find the analytic expressions for TðtÞ and V ðtÞ;
and to analyze the asymptotic behaviour of these functions.

For the M-transformation one can consult [13, II, Kapitel 7]. First it is proved that

TðtÞ ¼ lim
o-N

1

2pi

Z x0þio

x0�io
expðtzÞ #TðzÞ dz

¼
1

2pi

Z
S

expðtzÞ #TðzÞ dz ¼ Mð #TÞðtÞ: ð41Þ

The curve S is given in Fig. 4. The point z0ðRe z0 > 0 or z0 ¼ 0Þ is a singular point of #TðzÞ; but #TðzÞ
is analytic between two curves S and fz;Re z ¼ x0g:

By Proposition 2.1 all singularities of the function #TðzÞ are of the form z ¼ 0; z ¼ r > 0 and
z ¼ r expðigÞ; jgj > p=2: Then there exists a d > 0 such that #T3ðzÞ and #TðzÞ are analytic on the right
of the curve S (cf. Fig. 4) which consists of two straight lines having angles p=2 þ d and
�ðp=2 þ dÞ and an arc of a circle with centre in z0 and of arbitrary small radius.

Let O denote the closed domain with the border @O consisting of the straight line ‘‘1’’ the arcs
‘‘2’’ and ‘‘3’’ with any R > 0 and a part of the curve S (cf. Fig. 4).
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It is well known (see Ref. [13, I, p.226]) that

1

2pi

Z
S

expðtzÞzl dz ¼
t�l�1

Gð�lÞ
; t > 0; lAC: ð42Þ

By using Eq. (42) for l ¼ �1; it follows that

1

2pi

Z
S

expðtzÞz�1 dz ¼ 1: ð43Þ

Consider now the integral

1

2pi

Z
@O

expðtzÞ #T3ðzÞ dz ¼ 0: ð44Þ

By the properties of #T3; when the radius R of the arcs ‘‘2’’ and ‘‘3’’ tend to infinity, the integral
(42) becomes

1

2pi

Z
S

expðtzÞ #T3ðzÞ dz ¼
1

2pi

Z x0þiN

x0�iN

expðtzÞ #T3ðzÞ dz: ð45Þ

Now from Eqs. (43) and (45) it follows

TðtÞ ¼L�1ð #TÞðtÞ ¼ T0 �
1

2pi

Z x0þiN

x0�iN

expðtzÞ #T3ðzÞ dz

¼
1

2pi

Z
S

expðtzÞ #TðzÞ dz ¼ Mð #TÞðtÞ: ð46Þ

Therefore, the following proposition holds;

Proposition 2.2. Let z0 ¼ rX0 be a singular point of #TðzÞ such that for all other singular points zi of
#TðzÞ we have Re zior: Then Eq. (41) is true with S given in Fig 4.
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3. Asymptotic behaviour of the solution to Eq. (15)

Following Proposition 2.1 in the asymptotic analysis, consider three cases: bþ po0; bþ p ¼ 0
with Ao0; bþ po0 with A > 0 and bþ p > 0: The analysis is based on the following theorem.

Theorem (Doetsch [13, II, p. 157]). Let the function f ðzÞ be analytic in the sector jargðz � z0Þjp
C;p=2oCop; of a neighbourhood of z0; except in z0: Let f ðzÞ be locally integrable on the rays

argðz � z0Þ ¼ 7c: The function FðtÞ is given by Mð f Þ; for tXT ; where T is a positive number.
Suppose that for alAC one has

f ðzÞBMðz � z0Þ
l; z-z0; uniformly in jargðz � z0ÞjpC; ð47Þ

then

F ðtÞBM expðz0tÞ
t�l�1

Gð�lÞ
; t-N: ð48Þ

If l ¼ 0; 1; 2;y we take 1=Gð�lÞ ¼ 0 and

F ðtÞ ¼ oðexpðz0tÞt�l�1Þ: ð49Þ

To find the asymptotic behaviour of TðtÞ the cited Theorem and Proposition 2.2 are used. The
following cases will be distinguished:

Case I: Suppose that bþ po0 or bþ p ¼ 0 and p þ bðtu=tqÞo0: By Proposition 2.1 there exists
and r� > 0 such that Dðr�Þ ¼ 0: Let M denote

M ¼ lim
z-r�

ðz � r�Þ #TðzÞ: ð50Þ

Then by Eq. (48)

TðtÞBM expðr�tÞ: ð51Þ

Case II: Suppose that bþ p > 0: Since z ¼ 0 is a point of ramification and limz-0
#TðzÞ ¼

T1=ðp þ bÞ; then by Eq. (49)

TðtÞ ¼ oðt�1Þ; t-N: ð52Þ

Case III: Suppose that bþ p ¼ 0 with A > 0: Now #TðzÞBT1z�a; z-0: Hence

TðtÞ ¼ BT1
ta�1

GðaÞ
; t-N: ð53Þ

The results are summarized as:

Proposition 3.1. The asymptotic behaviour of the solution TðtÞ to Eq. (15) when t-N is

TðtÞBM expðr�tÞ if bþ po0; or bþ p ¼ 0 with p þ b
tu

tq

o0;

TðtÞBoðt�1Þ if bþ p > 0;

TðtÞBT1
ta�1

GðaÞ
if bþ p ¼ 0 with p þ b

tu

tq

> 0: ð54Þ
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4. Conclusions

In this work a stability analysis of an elastic rod positioned on visco-elastic foundation of
fractional derivative type is presented. In order to examine the influence of the visco-elastic
foundation on stability note that the rod without foundation, i.e., b ¼ 0 in Eq. (6) is stable
according to Liapunov stability criteria, when the value of the dimensionless force l satisfies (see
Ref. [6, p. 363])

lop2; ð55Þ

while for the case when

l > p2; ð56Þ

the instability of a rod without foundation is obtained.
For the elastic rod with visco-elastic foundation of the fractional derivative type, the following

cases are distinguished:
1. Suppose that Eq. (55) is satisfied so that, from Eq. (17), p > 0: Then, since b > 0 (see

Eq. ð10Þ6) in Proposition 3.1 the case ð54Þ2 applies and the rod is asymptotically stable, i.e. the
vibrations of the rod die out.

2. Suppose that Eq. (56) is satisfied, i.e., po0 and that bþ p > 0: Then according to Proposition
3.1 the rod is stable, although without foundation ðb ¼ 0Þ the rod would be unstable. Thus, the
foundation stabilizes the rod.

3. If bþ p ¼ 0 and the thermodynamic restriction is satisfied, i.e., tu > tq (see Eq. (13)) then
p þ bðtu=tqÞ > 0 and according to Proposition 3.1 the case ð54Þ3 applies so that the rod is stable.

4.If, as in the previous case, bþ p ¼ 0 but the thermodynamic restriction (see Eq. (13)) is
violated, then tuotq and accordingly p þ bðtu=tqÞo0 and the rod is according to Proposition 3.1
the case ð54Þ1 unstable. The same is true if bþ po0 independently of the thermodynamic
restriction.

On the basis of the analysis presented here it follows that the value of the sum of parameters p
and b determines the stability of the lateral vibration of the rod: if p þ b > 0 the rod is stable and if
p þ bo0 the rod is unstable. The case p þ b ¼ 0 corresponds to stable vibrations if the
thermodynamic restriction tu > tq is satisfied, otherwise the vibrations are unstable.

Now compare results obtained here with the results of static stability analysis of an elastic rod
on elastic foundation. Note that the case tu ¼ tq in Eq. (11) corresponds to elastic foundation.
For such a foundation Euler stability criteria leads to the critical force Fcr ¼ ðp2EI=l2Þ þ ml2=p2

(see Ref. [15, p. 109]) where m is, in our notation m ¼ bEp: Thus

Fo
p2EI

l2
þ

bEpl2

p2
; ð57Þ

guarantees (static) stability of a rod on elastic foundation. The dynamic analysis presented in this
paper as the conditions for stability requires p þ b > 0; or p2ðp2 � ðFl2=EIÞÞ þ bðEpl4=EIÞ > 0:
This condition is satisfied if Eq. (57) holds. Thus, the condition for stability of a rod on an elastic
foundation can be obtained, as a special case, from the results presented here.

Finally results, summarized in Proposition 3.1 could be applied to determine the stability
boundary of the rod without foundation, i.e., for b ¼ 0: The case ð54Þ1 for stability requires p > 0
and this is equivalent to Eq. (55).
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The results presented in this work could be generalized either by analyzing more complicated
fractional derivative models as in Refs. [16–18] or other boundary conditions.
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